博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
毕达哥拉斯三元组(勾股数组)poj1305
阅读量:5773 次
发布时间:2019-06-18

本文共 3094 字,大约阅读时间需要 10 分钟。

本原毕达哥拉斯三元组是由三个正整数x,y,z组成,且gcd(x,y,z)=1,x*x+y*y=z*z

对于所有的本原毕达哥拉斯三元组(a,b,c) (a*a+b*b=c*c,a与b必定奇偶互异,且c为奇数。这里我们设b为偶数)

则:和

a=st

b=(s*s-t*t)/2

c=(s*s+t*t)/2

其中s>t>=1且gcd(s,t)=1 

是一一对应的。

看看别人得证明:

看看我的证明

 

有了这个定理就这题就很好做了。

Fermat vs. Pythagoras
Time Limit: 2000MS   Memory Limit: 10000K
Total Submissions: 1456   Accepted: 848

Description

Computer generated and assisted proofs and verification occupy a small niche in the realm of Computer Science. The first proof of the four-color problem was completed with the assistance of a computer program and current efforts in verification have succeeded in verifying the translation of high-level code down to the chip level. 
This problem deals with computing quantities relating to part of Fermat's Last Theorem: that there are no integer solutions of a^n + b^n = c^n for n > 2. 
Given a positive integer N, you are to write a program that computes two quantities regarding the solution of x^2 + y^2 = z^2, where x, y, and z are constrained to be positive integers less than or equal to N. You are to compute the number of triples (x,y,z) such that x < y < z, and they are relatively prime, i.e., have no common divisor larger than 1. You are also to compute the number of values 0 < p <= N such that p is not part of any triple (not just relatively prime triples). 

Input

The input consists of a sequence of positive integers, one per line. Each integer in the input file will be less than or equal to 1,000,000. Input is terminated by end-of-file

Output

For each integer N in the input file print two integers separated by a space. The first integer is the number of relatively prime triples (such that each component of the triple is <=N). The second number is the number of positive integers <=N that are not part of any triple whose components are all <=N. There should be one output line for each input line.

Sample Input

1025100

Sample Output

1 44 916 27
////  main.cpp//  poj1305////  Created by 陈加寿 on 15/11/30.//  Copyright (c) 2015年 陈加寿. All rights reserved.//#include 
#include
#include
#include
using namespace std;int mark[1001000];long long gcd(long long a,long long b){ if(b==0) return a; return gcd(b,a%b);}int main(int argc, const char * argv[]) { int n; while(cin>>n) { memset(mark,0,sizeof(mark)); int cnt=0; for(long long i=1;;i+=2) { long long a,b,c; if( (i*i+(i+2)*(i+2))/2 >n ) break; for(long long j=i+2;;j+=2) { if(gcd(i,j)==1) { c=(i*i+j*j)/2; b=(j*j-i*i)/2; a=i*j; if(c>n) break; cnt++; for(long long k=1;k*c<=n;k++) { mark[a*k]=1; mark[b*k]=1; mark[c*k]=1; } } } } int ans=0; for(int i=1;i<=n;i++) if(mark[i]==0) ans++; cout<
<<" "<
<

 

转载地址:http://xzaux.baihongyu.com/

你可能感兴趣的文章
脱离“体验”和“安全”谈盈利的游戏运营 都是耍流氓
查看>>
慎用!BLEU评价NLP文本输出质量存在严重问题
查看>>
基于干净语言和好奇心的敏捷指导
查看>>
Node.js 2017企业用户调查结果发布
查看>>
“软”苹果水逆的一周:杂志服务崩溃,新机型遭泄露,芯片首架离职
查看>>
JAVA的优势就是劣势啊!
查看>>
ELK实战之logstash部署及基本语法
查看>>
帧中继环境下ospf的使用(点到点模式)
查看>>
BeanShell变量和方法的作用域
查看>>
LINUX下防恶意扫描软件PortSentry
查看>>
由数据库对sql的执行说JDBC的Statement和PreparedStatement
查看>>
springmvc+swagger2
查看>>
软件评测-信息安全-应用安全-资源控制-用户登录限制(上)
查看>>
cacti集成
查看>>
Android中的Cursor
查看>>
我的友情链接
查看>>
Java Web Application 自架构 一 注解化配置
查看>>
如何 debug Proxy.pac文件
查看>>
Python 学习笔记 - 面向对象(特殊成员)
查看>>
Kubernetes 1.11 手动安装并启用ipvs
查看>>